首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   1篇
  国内免费   3篇
航空   41篇
航天技术   59篇
航天   25篇
  2021年   3篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2014年   11篇
  2013年   6篇
  2012年   6篇
  2011年   15篇
  2010年   5篇
  2009年   9篇
  2008年   17篇
  2007年   3篇
  2006年   2篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有125条查询结果,搜索用时 547 毫秒
11.
The nonlinear system concepts of nonlinear transfer functions are extended to nonlinear cross sections which may be used to quantitatively describe the characteristics of a nonlinear scatter. The concept of nonlinear cross sections is used to generalize the radar equation for nonlinear scattering objects.  相似文献   
12.
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented.  相似文献   
13.
We present a Python-based data reduction pipeline package (PLP) for the Immersion GRating INfrared Spectrograph (IGRINS), an instrument that covers the complete H- and K-bands in one exposure with a spectral resolving power of 40,000. The reduction steps carried out by the PLP include flat-fielding, background removal, order extraction, distortion correction, wavelength calibration, and telluric correction using spectra of A type standard stars. As the spectrograph has no moving parts, the PLP automatically reduces the data using predefined functions for the processes of order extraction, distortion correction, and wavelength calibration. Before the telluric correction of the target spectra, the intrinsic hydrogen absorption features of the standard A star are removed with a Gaussian fitting algorithm. The final result is the flux of the target as a function of wavelength. Users can customize the predefined functions for the extraction of the spectrum from the echellogram and adjust the parameters for the fitting functions for the spectra of celestial objects, using “fine-tuning” options, as necessary. Presently, the PLP produces the best results for point-source targets.  相似文献   
14.
Using Geographic Information Systems (GIS), we performed comparative analysis among stratigraphic information and the Kaguya (SELENE) GRS data of the ∼2500-km-diameter South Pole-Aitken (SPA) basin and its surroundings. Results indicate that the surface rock materials (including ancient crater materials, mare basalts, and possible SPA impact melt) are average to slightly elevated in K and Th with respect to the rest of the Moon. Also, this study demonstrates that K and Th have not significantly changed since the formation of SPA. The elemental signatures of the impact basin of Fe, Ti, Si, O through time include evidence for resurfacing by ejecta materials and late-stage volcanism. The oldest surfaces of SPA are found to be oxygen-depleted during the heavy bombardment period relative to later stages of geologic development, followed by both an increase in silicon and oxygen, possibly due to ejecta sourced from outside of SPA, and subsequent modification due to mare basaltic volcanism, which increased iron and titanium within SPA. The influence of the distinct geologic history of SPA and surroundings on the mineralogic and elemental abundances is evident as shown in our investigation.  相似文献   
15.
Forced vibration analysis including a vortex lattice prediction given an external aerodynamic force is conducted in this paper based on a standing wave formulation. The starting point of the standing wave formulation is a set of blade disk normal modes that incorporate all forms of the blade, disk, and shroud elastic coupling. The Küssner gust function was used in a few previous investigations of forced vibration based on the standing wave formulation. However, it was found to be valid only for low engine-order excitation. Therefore, a two-dimensional unsteady vortex lattice method is employed in this paper to predict the gust excitation up to higher engine-order excitation. Thus, the present unsteady vortex lattice analytical model is capable of capturing compressibility and higher engine-order excitation. It features advantages in terms of its computational time and level of accuracy. The effects of mistuning a cascaded blade are also examined in the present aeroelastic analysis to determine the possible advantages obtained by doing this. Numerical results for the mistuned bladed disk are presented regarding its forced response characteristics. In a low engine-order excitation condition, it is shown that similar predictions are obtained between the present and earlier analyses. The maximum discrepancy in the blade amplitude is 70% for a single-blade mistuned rotor and 62.6% for an alternately mistuned rotor, in the worst case, compared to a completely tuned rotor. Single-peak frequencies are presented and analyzed in the higher engine-order excitation levels.  相似文献   
16.
In heavy ion radiotherapy and space travel humans are exposed to energetic heavy ions (C, Si, Fe and others). This type of irradiation often produces more severe biological effects per unit dose than more common X-rays. A new Monte Carlo model generates a physical space with the complex geometry of human tissue or a cell culture based model of tissue, which is affected by the passage of ionizing radiation. For irradiation, the model relies on a physical code for the ion track structure; for tissues, cellular maps are derived from two- or three-dimensional confocal microscopy images using image segmentation algorithm, which defines cells as pixilated volumes. The model is used to study tissue-specific statistics of direct ion hits and the remote ion action on cells. As an application of the technique, we considered the spatial pattern of apoptotic cells after heavy ion irradiation. The pattern of apoptosis is modeled as a stochastic process, which is defined by the action cross section taken from available experimental data. To characterize the degree of apoptosis, an autocorrelation function that describes the spatial correlation of apoptotic cells is introduced. The values of the autocorrelation function demonstrate the effect of the directionality of the radiation track on the spatial arrangements of inactivated cells in tissue. This effect is intrinsic only to high linear-energy-transfer radiation.  相似文献   
17.
The potential for exposure to large solar particle events (SPEs) with high energy levels is a major concern during interplanetary transfer and extra-vehicular activities (EVAs) on the lunar and Mars surface. Previously, we have used data from the last 5 solar cycles to estimate percentiles of dose to a typical blood-forming organ (BFO) for a hypothetical astronaut in a nominally shielded spacecraft during a 120-d lunar mission. As part of this process, we made use of complete energy spectra for 34 large historical SPEs to calculate what the BFO mGy-Eq dose would have been in the above lunar scenario for each SPE. From these calculated doses, we then developed a prediction model for BFO dose based solely on an assumed value of integrated fluence above 30 MeV (Φ30) for an otherwise unspecified future SPE. In this study, we reasoned that since BFO dose is determined more by protons with higher energies than by those with lower energies, more accurate BFO dose prediction models could be developed using integrated fluence above 60 (Φ60) and above 100 MeV (Φ100) as predictors instead of Φ30. However to calculate the unconditional probability of a BFO dose exceeding a pre-specified limit (“BFO dose risk”), one must also take into account the distribution of the predictor (Φ30,Φ60, or Φ100), as estimated from historical SPEs. But Φ60 and Φ100 have more variability, and less available historical information on which to estimate their distributions over many SPE occurrences, than does Φ30. Therefore, when estimating BFO dose risk there is a tradeoff between increased BFO dose prediction at a given energy threshold and decreased accuracy of models for describing the distribution of that threshold over future SPEs as the threshold increases. Even when taking the second of these two factors into account, we still arrived at the conclusion that overall prediction improves as the energy level threshold increases from 30 to 60 to 100 MeV. These results can be applied to the development of approaches to improve radiation protection of astronauts and the optimization of mission planning for future space missions.  相似文献   
18.
19.
Ions of galactic origin are modified but not attenuated by the presence of shielding materials. Indeed, the number of particles and the absorbed energy behind most shield materials increases as a function of shield thickness. The modification of the galactic cosmic ray composition upon interaction with shielding is the only effective means of providing astronaut protection. This modification is intimately connected with the shield transport properties and is a strong function of shield composition. The systematic behavior of the shield properties in terms of microscopic energy absorption events will be discussed. The shield effectiveness is examined with respect to conventional protection practice and in terms of a biological endpoint: the efficiency for reduction of the probability of transformation of shielded C3H10T1/2 mouse cells. The relative advantage of developing new shielding technologies is discussed in terms of a shield performance as related to biological effect and the resulting uncertainty in estimating astronaut risk.  相似文献   
20.
We derive bias-corrected X-ray luminosity functions (XLFs) of LMXBs detected in 14 E and S0 galaxies observed with Chandra. After correcting for incompleteness, the individual XLFs are statistically consistent with a single power-law. A break at or near LX,Eddington , as previously reported, is not required in any individual case. The combined XLF with a reduced error, however, suggests a possible break at LX = 5 × 1038 erg s−1, which may be consistent with the Eddington luminosity of neutron stars with the largest possible mass (3 M), or of He-enriched neutron star binaries. We confirm that the total X-ray luminosity of LMXBs is correlated with the the near-IR luminosities, but the scatter exceeds that expected from measurement errors. The scatter in LX(LMXB)/LK appears to be correlated with the specific frequency of globular clusters, as reported earlier.

We cross-correlate X-ray binaries with globular clusters determined by ground-based optical and HST observations in 6 giant elliptical galaxies. With the largest sample reported so far (300 GC LMXBs with a 5:2 ratio between red and blue GCs), we compare their X-ray properties, such as X-ray hardness, XLF and LX/LB and find no statistically significance difference between different groups of LMXBs. Regardless of their association with GCs, both GC and field LMXBs appear to follow the radial profile of the optical halo light, rather than that of more extended GCs. This suggests that while metallicity is a primary factor in the formation of LMXBs in GCs, there may be a secondary factor (e.g., encounter rate) playing a non-negligible role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号